

 Navigation

 	
 index

 	
 next |

 	django-signup 0.3.1 documentation

django-signup’s documentation

django-signup is a Django app that handles user registration.

Contents:

	Installation

	Setup
	Settings

	Templates

	Management commands
	clear_expired_signups

	Admin interface

	Using custom user models
	The custom user model

	The custom sign up form

	Using the new form

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Felipe Bessa Coelho.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-signup 0.3.1 documentation

Installation

To install django-signup, use pip:

pip install django-signup

If you want the latest-and-greatest version, install it with

pip install -e hg+http://bitbucket.org/fcoelho/django-signup#egg=django-signup

 Copyright 2013, Felipe Bessa Coelho.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-signup 0.3.1 documentation

Setup

You have to add the app to INSTALLED_APPS and also include some URLs in
your urlconf:

INSTALLED_APPS = (
 ...
 'signup',
 ...
)

urlpatterns = patterns('',
 ...
 url(r'^accounts/', include('signup.urls')),
 ...
)

Settings

There are two settings specific to django-signup.

SIGNUP_ACTIVATION_DAYS

This controls for how many days an instance of
signup.models.Validation will be valid before being considered
“expired”. It is used on the clear_expired_signups management command.

If not set in the user settings, the default value is 2 days.

SIGNUP_FORM_CLASS

A string with the full dotted name of a class representing the form to be used
on the signup page.

If not specified, the signup.forms.DefaultUserCreationForm class is
used.

 Copyright 2013, Felipe Bessa Coelho.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-signup 0.3.1 documentation

Templates

The app does not ship with any templates. There are some templates in the
sample project available in the source distribution, but you should write your
own but they are extremely simple and for demonstration purposes only.

These are the templates you should create at the very least:

	
registration/signup_form.html

	Holds the registration form. It is displayed by a view which inherits from
FormView [http://ccbv.co.uk/projects/Django/1.5/django.views.generic.edit/FormView/]. It has the following context:

	form: an instance of the configured SIGNUP_FORM_CLASS or an
instance of django.contrib.auth.forms.UserCreationForm

	
registration/signup_complete.html

	A simple page indicating that the account has been created and an email has
been sent to finish the sign up process. It has no special context.

	
registration/activation_failed.html

	Should display a message indicating that the activation failed. It has the
following context:

	activation_key: The key used to activate the account. It’s part of
the URL

	
registration/activation_complete.html

	Should display a message saying that the account was successfully
activated. It has no special context.

	
registration/activation_email.txt

	Contains the email subject and body, in text and optional html format. This
template has a special “syntax” in order to include the subject and body in
the same file. A sample file is shown below. Empty lines at the begin and
end of each block are stripped away.

-- title=subject

This is the subject of the email,

multiple lines will be joined

-- title=txt
This is the text part of the email

-- title=html
This is the html part of the email, it's optional

This template has the following context:

	url: The full url to be used to activate the account. Includes the
domain and path

	activation_days: How many days the user has to activate his account

 Copyright 2013, Felipe Bessa Coelho.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-signup 0.3.1 documentation

Management commands

Until now, there is only one management command, documented below.

clear_expired_signups

This command is used to delete from the database user registrations that are
more than SIGNUP_ACTIVATION_DAYS days old and haven’t been activated
yet.

It deletes both the signup.models.Validation instance and the user
model instance. By that time, it’s worth noting that the username [1]
registered by the original user becomes available again. If the original user
still wants to keep that username, it has to register again.

Footnotes

	[1]	“username”, here, refers to the field marked as USERNAME_FIELD [https://docs.djangoproject.com/en/dev/topics/auth/customizing/#django.contrib.auth.models.CustomUser.USERNAME_FIELD] in
current installed user model.

 Copyright 2013, Felipe Bessa Coelho.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-signup 0.3.1 documentation

Admin interface

django-signup adds its signup.models.Validation class to the admin
interface for easy inspection of the current validations.

In addition, you can also resend the activation emails if necessary. To do
that, select the target validation instances and, from the drop down menu,
select Resend activation email.

 Copyright 2013, Felipe Bessa Coelho.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 previous |

 	django-signup 0.3.1 documentation

Using custom user models

This app was created to be used with custom user models, which were introduced
in Django 1.5. While the basic configuration in Setup allows you to use
django-signup with the default user model, some extra configuration is
needed in order to work with custom user models.

The custom user model

Consider the following user model and associated manager:

from django.contrib.auth.models import AbstractBaseUser, BaseUserManager
from django.db import models

class CustomUserManager(BaseUserManager):
 def create_user(self, email, password=None):
 if not email:
 raise ValueError('missing email')
 user = self.model(email=email)
 user.set_password(password)
 user.save(using=self._db)
 return user

 def create_superuser(self, email, password):
 #for this example, nothing special happens here
 return self.create_user(email, password)

class CustomUser(AbstractBaseUser):
 email = models.EmailField(
 max_length=254,
 unique=True,
 db_index=True
)

 objects = CustomUserManager()

 USERNAME_FIELD = 'email'

 def get_short_name(self):
 return self.email
 def get_full_name(self):
 return self.email

This model has, in practice, two fields: email and password, the
latter which is provided by AbstractBaseUser.

The custom sign up form

Requirements

When this user model is installed (see the docs),
it is already available to Django, but django-signup requires you to
create a custom version of what Django provides as
UserCreationForm.

This form should have all the necessary information needed to create a custom
user model instance through the CustomUser.objects.create_user method.
What that really means is:

	For every field in CustomUser.REQUIRED_FIELDS plus
CustomUser.USERNAME_FIELD, there should be a field of the same name in
the sign up form;

	The only exception is the password field, which is populated from three
possible different sources: password, password1, or password2.
This is to accommodate forms which have duplicated fields for password
checking (which you should do anyway).

When calling create_user, django-signup will use the first available
value from those three options, so make sure that, if you have more than one
password field, the values match. Ensure that with a clean_* method on
the form, as shown below.

The drawback of this approach is that you have to call your password fields
password{,1,2} instead of, say, pw or anything else.

Implementation

For the user model described above, this form might look like the following:

from django import forms
from your_app.models import CustomUser

class UserSignUpForm(forms.Form):
 email = forms.EmailField()
 password1 = forms.CharField(widget=forms.PasswordInput)
 password2 = forms.CharField(widget=forms.PasswordInput)

 def clean_email(self):
 email = self.cleaned_data['email'].strip()
 try:
 CustomUser.objects.get(email__iexact=email)
 raise forms.ValidationError('email already exists')
 except CustomUser.DoesNotExist:
 return email

 def clean_password2(self):
 pw1 = self.cleaned_data.get('password1')
 pw2 = self.cleaned_data.get('password2')
 if pw1 and pw2 and pw1 == pw2:
 return pw2
 raise forms.ValidationError("passwords don't match")

Note that you should implement whatever logic you need to verify your data
here. In this case, we’re checking for uniqueness of the email field and that
both passwords match. The email field is also going to be checked when the
new user is about to be inserted at the database, but by performing our check
in the form we’re able to provide the user with a meaningful message about why
the signup process didn’t go as expected.

Using the new form

Next, you have to tell django-signup that you want to use this specific
form during the registration process. Suppose that the above form is inside
the your_app/forms.py file. Then, you have to add the following to your
project settings:

SIGNUP_FORM_CLASS = 'your_app.forms.UserSignUpForm'

 Copyright 2013, Felipe Bessa Coelho.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	django-signup 0.3.1 documentation

Index

 R
 | T

R

 	

 	
 registration/activation_complete.html

 	

 	Template

 	
 registration/activation_email.txt

 	

 	Template

 	
 registration/activation_failed.html

 	

 	Template

 	

 	
 registration/signup_complete.html

 	

 	Template

 	
 registration/signup_form.html

 	

 	Template

T

 	

 	
 Template

 	

 	registration/activation_complete.html

 	registration/activation_email.txt

 	registration/activation_failed.html

 	registration/signup_complete.html

 	registration/signup_form.html

 Copyright 2013, Felipe Bessa Coelho.
 Created using Sphinx 1.1.3.

 _static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		django-signup 0.3.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Felipe Bessa Coelho.
 Created using Sphinx 1.1.3.

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/down.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

